

AMD pathophysiology

Florian Sennlaub

Age related Macular Degeneration

Risk Factors:

1rst cause of visual impairment

Beaver Dam Study

Nathalie de Preobrajensky

Mononclear Phagocytes

Resident Macrophages efferocytosis / surveillance

Monocyte-derived Macrophages Trauma / Infection Keratinocyt Inflammatory CCR2⁺macrophages anti-microbial / collateral damage Release of PDGF by platelets No cytokine and chemokin production Alternative macrophages 10> T_1 cell Fibroblast angiogenesis / fibrosis / scar formation CCL2 attracts nonocytes from the pleen and bone ma 0 0 0 0 0 0 0 0101010 Blood vesse Inflammation resolution 0 0 0 0 0 0 0 0 01010 Homeostasis

Table 1 Body sites and tissues that are immune privileged					
Sites	Tissues				
Eye: cornea, anterior chamber, vitreous cavity and subretinal space	Eye: cornea, lens, pigment epithelium and retina				
Brain: ventricles and striatum	Brain and spinal cord				
Pregnant uterus	Placenta				
Ovary	Ovary				
Testis	Testis				
Adrenal cortex	Liver				
Hair follicles					
Hamster cheek pouch	Hamster cheek pouch				
Certain tumours	Certain tumours				
Immune privilege is a characteristic of specialized tissues and sites in the body. Immune-privi					

Immune privilege is a characteristic of specialized tissues and sites in the body. Immune-privileged sites allow foreign grafts to survive for extended, often indefinite intervais, and immune-privileged tissues survive for extended, often indefinite intervais at conventional sites, as described in Rtres and 6. Immune priviledge reduces the inflammatory reaction in organs where potential collateral damage outweighs the risk from infection

Nature Reviews | Immunology

Mononuclear phagocyte distribution in Health and AMD

2013

MPs infiltrate and accumulate in AMD

CCR2+Mo-derived Mfs participate in the infiltrate

Abundance of infiltrating CD163+ cells in the retina of postmortem eyes with dry and neovascular age-related macular degeneration

Eleonora M. Lad¹ · Scott W. Cousins¹ · John S. Van Arnam² · Alan D. Proia^{1,2}

Lad et al. Graefes Arch Clin Exp Ophthalmol. 2015

Correlation of Histologic Features with In Vivo Imaging of Reticular Pseudodrusen

Ursula Greferath, PhD, ^{1,*} Robyn H. Guymer, PhD, ^{2,3,*} Kirstan A. Vessey, PhD, ¹ Kate Brassington, PhD, ^{2,3} Erica L. Fletcher, PhD¹

Greferath et al. Am Aca of Ophthalmol. 2016

Melanophages are at the origin of hyperreflective foci in AMD Hyperreflective foci

highly predictive biomarker for progression from intermediate to late AMD Chrisenbury et la. IOVS 2013; Leuschen et al. Ophthalmology 2013 HF are caused by retinal melanosome containing cells

Balaratnasingam, C., *et al.* Ophthalmology 2017

RPE65 melanin autofluo RPE65

How are melanophages generated

Augustin et al. J Neuroinfl. 2023

Aged CD47-/- mice present hyperreflective foci

CD47^{-/-} mouse

1) CD47= TSP1 receptor

CD47 mediates physiological subretinal immune suppression

Thrombospondin-1-mediated regulation of microglia activation after retinal injuryNg et al., IOVS, 2009Lack of thrombospondin 1 and exacerbation of choroidal neovascularizationWang et al., Arch OPhth, 2012

N-tei

5444203394441444

Receptor: TSP1

CD47

2) CD47= ligand for Sirp α receptor CD47 inhibits trogocytosis of melanolipofuscein from the RPE

CD47 Ligand: SIRPα

Melanophages in serial block-face scanning electron microscopy

Melanophages in serial block-face scanning electron microscopy

nucleus melanosome other organelles

Fletcher, EL., et al. Ophthalmic and Physiological Optics 2020

Melanophages are at the origin of hyperreflective foci in AMD

- Melanosome containing cells (MCCs) provoke HF in AMD (C. Balaratnasingam, Ophthalmology (2017))
- MCCs in AMD are never positive for RPE markers
- The majority of MCCs in AMD are positive for $M\phi$ markers
- RPE melanosomes transfer to subretinal M ϕ and form Melanophages *in vivo*
- Melanophages in vivo provoke HF in OCT

Melanophages are most likely at the origin of HFs

- Melanosomes are not a specific marker for RPE cells in the context of AMD (Melanophages)
- There is no evidence that RPE cells can « transdifferentiate » into macrophages

There is no evidence that HFs in AMD are due to migrating RPE cells

AMD pathogenesis: chronic MP accumulation

→ Just cleaning up?

Macrophage-driven degeneration

Cardinal features of age related macular degeneration develop secondary to a CX3CR1-dependent subretinal microglia accumulation

- Age
- Light (albino)
- Laser injury

Combadière et al. J Clin Invest. Volume 117, issue 10 (Oct, 2007)

• Age

AgeLight (albino)

Light (albind)
Laser injury

Laser injury

- → A deficit in a macrophage gene (CX3CR1) is sufficient to induce age-related inflammation, degeneration, and CNV
- → CX3CR1-deficiency aggravates retinal disease

IRD models: Peng et al 2014, Zabel et al. 2016 (rd10); Diabetic retinopathy: Beli *et al.* 2016; Cardona et al. 2015; Kezib. Et al. 2013; Mendiola et al; 2016; Glaucoma: Wang et al. 2014; Paraquat-induced retinopathy: Chen et al. 2013

AMD pathogenesis: why certain people?

Why do certain people develop AMD?

AMD: most heritable multifactorial disease

- Homozygosity for CFH402H risk variant
 = 10 fold risk increase for GA and wetAMD
- Homozygosity for 10q26 risk variant
 = 10 fold risk increase for GA and wetAMD

CFH Y402H?

Heterozygosity for the risk CFH 402H variant = 3 fold risk increase for GA Homozygosity for the risk CFH 402H variant = 10 fold risk increase for AMD

Alternative Complement cascade and Factor H

Complement Factor H

Proximity assay

CD11b/CD47 complexes

CD47 and CD11b co-locate on MCs

FH is necessary for chronic, pathogenic, age-related MP accumulation

Age-dependent accumulation (200-500lux 12h/24h)

CFH deletion prevents chronic age-related MP accumulation in Cx3cr1^{GFP/GFP} and TRE2 mice

Age-dependent degeneration (200-500lux 12h/24h)

CFH deletion prevents MP-associated degeneration in Cx3cr1^{GFP/GFP} and TRE2 mice

FH is inhibits resolution of light-induced acute inflammation

Light-induced accumulation (4d 4500lux 500nm)

CFH deletion does not affect acute light-induced inflammation but accelerates its resolution in Cx3cr1^{GFP/GFP} and TRE2 mice

Subretinal adoptive MP transfer

FH inhibits inflammation resolution in acute peritonitis

FH inhibbits the elimination of inflammatory Mφ in acute peritonitis

AMD pathogenesis: why certain people ?

AMD: most heritable multifactorial disease

1. Homozygosity for CFH402 risk variant = 10 fold risk increase for GA

Complement factor H inhibits CD47-mediated resolution of inflammation

- CFH is necessary for chronic pathogenic subretinal inflammation
- Mononuclear phagocyte-derived CFH inhibits their elimination during inflammation resolution
- CFH binding to CD11b/CD18 interferes with TSP-1 activation of the integrin-associated CD47
- The AMD-associated CFH402H is particularly potent to inhibit the elimination of microglial cells.

Is there too much CFH in AMD?

CFH immunohistochemistry

Hakobyan et al. IOVS 2008

CFH auto-antibodies

Dhillon et al. IOVS 2010

Plasma CFH

What about 10q26?

Heterozygosity for the risk 10q26 variant = 3 fold risk increase for AMD Homozygosity for the risk 10q26 variant = 10 fold risk increase for AMD

Locus 10q26 and AMD

- Minor Haplotype (mH) strongly **associated with GA and wetAMD**
- mH/mH→ **10x increased risk** to develop AMD

open chromatine sites in HTRA1 promoter mainly in Monocytes

10q26 variant and PLEKHA1, ARMS2 and HTRA1 expression in monocytes?

Characteristics	cH/cH (n=18)	mH/mH (n=18)	p value
Age, mean (SD)	80,3 (8,5)	81 (10,2)	0,416 (t student)
Women, n (%)	12 (66,7)	10 (55,6)	0,495 (chi2)
AMD, n (%)	9 (50)	9 (50)	

mH/mH monocytes: HTRA1 🛪

Where does HTRA1 locate in AMD eyes?

HTRA1 localisation in healthy and AMD cH/cH donors ?

What about the Hageman PNAS?

TSP-1 is a substrate of HTRA1

→ Where is TSP-1 cleaved ?

Where does HTRA1 cut TSP-1?

LAP-TGFβ Ţ CD36 CD47 \rightarrow Mass Spectrometry: 3 VVMICter VVM Nte ILLANDIN, M. M. M. H. DIDONIU **8 potential clivage site candidates** 1 11 185// 11 339// 1043// 1142// 215/1 Immune-suppression 998// 1090// 218// rTSP1 (1,5µg) + 088 rHTRA1 (ng) 834 1170 rCter (1,5µg) + CISTINITURE 880 41 kDa vvm Cter rHTRA1 (ng) -191. 97-50-rCter 64-)) VVM Cter VVM 1142// 38 kDa Flag) 51-30--25 -32 kDa 1090// 39-Flag))vvм Cter - d 🔾 28-15-19-Flag) 27 kDa VVM 1043// 10-14kDa anti-Flag 21,8 kDa Flag 998// anti- TSP-1 N-ter Western blot Western blot

HTRA1

TSP-1

HTRA1 separates the two CD47-binding sites of TSP-1

TSP-1

HTRA1 in co-culture of primary RPE and Mo

Automated human Mos / RPE co-culture system

LAP-TGFB

separating the two VVM CD47-binding sites of TSP-1 likely dramatically reduces its CD47-activating capacity

VVM peptide reverses HTRA1 in vivo

AMD pathogenesis: why certain people ?

CFH H402Y

Graphical Abstract

Calippe et al. Immunity 2017

10q26 haplotype

Graphical Abstract

Beguier et al. Immunity 2020

Why would the common AMD-polymorphisms play a role in subretinal inflammation?

The common AMD-associated polymorphisms might have appeared because they lead to a stronger inflammatory response and better defense against infectious disease.

AMD pathogenesis

Homeostasis

Rods

RPE

- Immune suppression
- Sub-RPE parainflammation (controls Drusen growth)?

Hyperreflective Foci

- Reticular drusen
- beginning photoreceptor degeneration

Maladaptive responses

 Can drive a perturbed state that is normally subthreshold, such as advanced aging, into a chronic progressive diseased state

> Accelerate progression of retinal degenerative disease

•May involve genetic variants such as CFH and APOE, as well as lifestyle risk factors (smoking, high-fat diet)

excessive macrophage infiltration

AMD

GA

wetAMD

- Photoreceptor degeneration ٠
- RPE degeneration
- neovascularisation

•

- Photoreceptor degeneration
- neovascularisation

Adaptive responses

 Help maintain retinal physiology, including in perturbed states that are normally subthreshold stressors, such as advanced aging

• Restrict the progression of retinal degenerative disease

 Involve homeostatic microglial checkpoint genes, such as Cx3cr1

Mononuclear phagocytes in retinal degeneration

Photoreceptor gene mutations

MP gene variants

Adaptive immune response

- 1. primary photoreceptor degeneration
- 2. microglia help contain toxic debris

Maladaptive immune response

- 1. genetic variants -> hyperinflammatory MPs
- 2. CCR2+Mo recruitment
- 3. inflammation-induced degeneration / neovascularization

Inflammation related drug targets for late AMD

Reduce the macrophage infiltrate:

- decreases Mo recruitement
- shorten Mphi half life
- Boost immuno-supressivity

Contents lists available at ScienceDirect

RETINAL AND EVE RESEARCH

Progress in Retinal and Eye Research

journal homepage: www.elsevier.com/locate/prer

On phagocytes and macular degeneration

Xavier Guillonneau ^{a, 1}, Chiara M. Eandi ^{b, 1}, Michel Paques ^{a, c, 1}, José-Alain Sahel ^{a, c, 1}, Przemyslaw Sapieha ^{d, 1}, Florian Sennlaub ^{a, *, 1}

^a Institut de la Vision, 17 rue Moreau, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, 75012, Paris, France

^b University of Torino, Department of Surgical Science, Eye Clinic, Torino, Italy

^c Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France

^d Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Quebec, Canada

Inflammation related drug targets for late AMD

AMD: Splenic monocytes / inflammatory reflex Splenic monocytes in AMD Inflammatory reflex

10

Augustin Post doc **R** Engineer

Delarasse senior senior

Grants: **Unadev 2018 Einstein Foundation 2014** Davis University Humboldt University

Sennlaub

Torben Sorensen University of Kopenhagen SU UMRS 1166 senior

